Characterization of Exponential Polynomials on Commutative Hypergroups
نویسندگان
چکیده
Exponential monomials are the basic building bricks of spectral analysis and spectral synthesis on Abelian groups. Recently there have been some attempts to extend the most important spectral analysis and spectral synthesis results from groups to hypergroups. For this purpose it is necessary to introduce a reasonable concept of exponential monomials. In this work we reconsider this problem, and using a ring-theoretical approach we prove characterization theorems for particular function classes, which can be considered as ”exponential monomials” on commutative hypergroups.
منابع مشابه
Discrete commutative hypergroups
The concept of a locally compact hypergroup was introduced by Dunkl [6], Jewett [14] and Spector [26]. Hypergroups generalize convolution algebras of measures associated to groups as well as linearization formulae of classical families of special functions, e.g. orthogonal polynomials. Many results of harmonic analysis on locally compact abelian groups can be carried over to the case of commuta...
متن کاملGeneralized Hypergroups and Orthogonal Polynomials
We study in this paper a generalization of the notion of a discrete hypergroup with particular emphasis on the relation with systems of orthogonal polynomials. The concept of a locally compact hypergroup was introduced by Dunkl [8], Jewett [12] and Spector [25]. It generalizes convolution algebras of measures associated to groups as well as linearization formulae of classical families of orthog...
متن کاملA SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS
In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.
متن کامل?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups
In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...
متن کاملAnalysis on Symmetric Cones (oxford Mathematical Monographs)
measure always exists on a commutative hypergroup K, and there always exists a 'Plancherel measure' on the dual space K of equivalence classes of irreducible representations of K, with respect to which Plancherel's formula holds for Fourier transforms. In contrast with the case of a locally compact abelian group, however, the Plancherel measure is not necessarily a Haar measure on K, and K need...
متن کامل